

System of System Management Strategy Impacts on SoS Engineering Effort

Jo Ann Lane
jolane@usc.edu
23 August 2011

For further information, see PhD dissertation at http://csse.usc.edu/csse/TECHRPTS/PhD Dissertations/files/Lane Dissertation.pdf

Key definitions

Scope of research

Methodology

Model implementation

Results of research

Conclusions and future work

COCOMO Cost Model Suite Overview*

^{*} Barry Boehm, Ricardo Valerdi, Jo Ann Lane, and Winsor Brown, "COCOMO Suite Methodology and Evolution", CrossTalk, April 2005.

Engineering Cost Model Overview

Size Drivers

General Form of Model Equation

Effort (person months) = $A * EM * (size)^B$ where A and B are calibration constants and EM (effort multiplier) is the composite cost factor

What is a "System of Systems"?

Development by composition Independent evolution of constituents

Exhibits emergent behavior Typical domains

- Military: Dynamic communications infrastructure
- Business: Enterprise-wide and cross-enterprise integration

SoSE Compared to Classic SE Activities: Reported Differences

Architecting

- Architecting composability vs. decomposition
- Net-friendly vs. hierarchical

Prototypes/experimentation/tradeoffs

- Early tradeoffs/evaluations of alternatives
- Intense concept phase analysis followed by continuous anticipation; aided by ongoing experimentation
- Modeling and simulation, in particular to better understand "emergent behaviors"
- First order tradeoffs above the component systems level
- Discovery and application of convergence protocols

SoSE Compared to Classic SE Activities: Reported Differences (continued)

Scope and performance

- Added "ilities" such as flexibility, adaptability, composability
- Human as part of the SoS
- Organizational scope defined at runtime instead of at system development time
- Dynamic reconfiguration of architecture as needs change

Maintenance and evolution

 Component systems separately acquired and continue to be managed as independent systems

SoSE Compared to Traditional SE Activities: Key Challenges for SoSE

People

- Business model/incentives to encourage working together
- Removing multiple decision making layers
- Requiring accountability at the enterprise level

Process

- Doing the necessary tradeoffs at the SoS level
- Human-system integration

Technical

- Interoperability at the SoS level
 - Data, architecture, business strategies
- Evolution management
- Maturity of technology

Classical SE and SoSE Activities

Translating capability objectives Assessing performance to capability Orchestrating objectives upgrades to SoS Developing Understanding & evolving systems & relationships SoS Addressing architecture requirements & solution options Monitoring & assessing changes **External Environment**

Traditional SE (Defense Acquisition Guide [DoD, 2006] View)

SoSE
(SoS SE Guidebook View Based on Interviews and Analysis of 18 DoD SoSs in Various Stages)

SoS Taxonomy

Internet

Virtual [Maier, 1998]

Collaborative [Maier, 1998]

Acknowledged [Dahmann, 2008]

Future Combat Systems

Directed [Maier, 2008]

^{*} Focus of this research effort

Initial Purpose of SoSE Model

Question: When is it cost effective to create and empower an SoSE team to oversee and guide the evolution of an SoS?

Primary hypothesis:

- There exists a threshold where it is more cost effective to manage and engineer changes to an SoS using an SoSE team
- Threshold can be determined by modeling the SoS interdependency and complexity characteristics.

Based on software-intensive SoSs owned by the US DoD

Provide:

- Guidance on the management of inter-related systems
- A method for conducting capability trade-off analyses
- A model that can evolve into an SoSE cost model through local calibration
- A better cost model for complex systems

SoSE Cost Model Approach

Using COSYSMO, developed a process model that can compare the SoS management strategies as SoS characteristics are varied

- SoS size (number of constituent systems)
- Size of SoS capability (number of equivalent nominal requirements)
- Scope of SoS capability (number of constituent systems affected by SoS capability)
- Constituent system volatility (level of constituent system change being engineered at the same time as SoS capability)

Process model based on data from

- 18 large-scale DoD SoS programs
- 16 DoD systems that participate as constituent systems in one or more SoSs

Analyze model outputs to determine under what conditions an SoSE team is cost effective

SoSE Model Overview

Model approach

- Estimate and compare the effort required to implement an SoS capability using two different management strategies
 - Collaborative (no SoSE team)
 - Acknowledged (SoSE with limited authority/control)

Assumptions and constraints

- All constituent systems exist and have their own evolutionary paths
- Model assumes SoSE and SE teams use relatively mature processes
- SoS capabilities are software-intensive
- No SoS capability/requirements volatility
- SoS internal volatility represented by constituent system volatility
- Does not address schedule or the asynchronous system upgrades
- Management of SoS internal interfaces reduces complexity for systems

Cost Driver: Systems Engineering Requirements

Requirements related to SoS capabilities

- Acknowledged SoS: Initially engineered at SoS level by SoSE team, then allocated to constituent systems for further SE
- Collaborative SoS: Engineered a the system level through collaborative efforts with other constituent system engineers

Non-SoS requirements related to constituent system stakeholder needs

- Must be monitored by SoSE team
- Represents on-going volatility at the constituent system level

Overview of SoSE Model Flow

General Form of academic COSYSMO Equation

Effort (person months) = $[38.55 * EM * (size)^{1.06}] / 152$

COSYSMO and SoSE Effort Multiplier

Key SoSE Characteristics Used to Develop SoS Sub-Models

SoSE sub-model

- SoSE oversight of constituents can be characterized by using the appropriate COSYSMO reuse factor
- Other non-traditional SE activities performed by SoSE team can be handled through COSYSMO cost factors
- Two types of requirements (SoS and constituent system non-SoS requirements) modeled together using different effort multipliers*

Constituent system sub-model

- Each system within the SoS is independently owned and managed
- Constituent system SE effort to support the SoSE team can be characterized by including extra design effort for the SoS requirements
- Two types of requirements (SoS and constituent system non-SoS requirements) modeled together using different effort multipliers*

^{*} Use of multiple effort multipliers allows one to model the diseconomy of scale as the SoS becomes larger through the integration of components with different characteristics....

Summary of Effort Calculations

Effort Category	Key Requirements Sets	Extensions to COSYSMO
SoSE effort	1.SoS capability requirements 2.CS non-SoS changes to be monitored	 Multiple EMs for different requirement sets "Oversight" factor based on COSYSMO reuse factors
CS effort with SoSE support	1.Allocated SoS capability requirements (with SoSE support) 2.CS non-SoS changes	 Multiple EMs for different requirement sets System design "tax" to support SoSE team capability option analysis
CS effort <u>without</u> SoSE support	1.SoS capability requirements 2.CS non-SoS changes	1. Multiple EMs for different requirement sets

General Form of COSYSMO Equation

Effort (person months) = $[38.55 * EM * (size)^{1.06}] / 152$

Summary of Model Effort Multipliers

EM	Value*	Modified Cost Parameters
SoSE effort	2.50	Requirements understanding (low) Level of service requirements (high) # of recursive levels in the design (high) Multisite coordination (low)
SoSE monitoring of CS Reqs	0.47	Technology risk (very low) Documentation (very low) Personnel/team capability (high)
Capability SE at CS level with SoSE Support	1.06	Architecture understanding (high) Level of service requirements (high)
Capability SE at CS level without SoSE Support	1.79	Requirements understanding (low) Level of service requirements (high)
SE of non-SoS reqs	0.72	Architecture understanding (high) # of recursive levels in the design (low)

^{*} Default value: 1.0 (all cost parameters set to nominal)

Range of SoS Complexity Factor Values

SoSE Model Parameter	Description	Range of Values
SoS Size	Number of constituent systems within the SoS	2-200
SoS Capability Size	Number of equivalent nominal requirements as defined by COSYSMO	1-1000
Constituent System Volatility	Number of non-SoS changes being implemented in each constituent system in parallel with SoS capability changes	0-2000
Scope of SoS Capability	Number of constituent systems that must be changed to support capability	One to SoS Size (all)
SoSE Oversight Factor	Oversight adjustment factor to capture SoSE effort associated with monitoring constituent system non-SoS changes	5%, 10%, and 15%

Model Results

Each graph shows for each OSF value: (SoSE effort + \sum Acknowledged CS; effort*) – (\sum Collaborative CS; effort *)

* CS effort is the sum of the SoS capability effort and the non-SoS requirements effort

Scenario 1 (SoS Size Varies)

Scenario 2 (SoS Size Varies)

Model Results (continued)

Scenario 3 (SoS Size Varies)

Scenario 5 (SoS Size Varies)

Scenario 4 (SoS Size Varies)

Scenario 6 (SoS Size Varies)

23

Model Results (continued)

Scenario 7-a (SoS Size = 10)

Scenario 8-a (SoS Size = 10)

Scenario 7-b (SoS Size = 100)

Scenario 8-b (SoS Size = 100)

Model Results (continued)

Scenario 9 (SoS Size = 10)

Scenario 10 (SoS Size = 5) Relative Cost of Collaborative a

Scenario 11 (SoS Size = 5)

Scenario 12 (SoS Size = 5)

SoSE cost model based on COSYSMO can provide

- Guidance to DoD leadership with respect to management structure
- A method for conducting capability trade-off analyses
- A model that can evolve into an SoSE cost model for a specific SoS
- A cost model that can better model complex systems

Guidance also applies to SoSs in other domains that are managed as collaborative or acknowledged SoSs

SoSE team is cost effective when

- SoS contains more than a "few" systems
- SoS capability changes typically affect a "significant percentage" of CSs
- SoS capability requirements are a "significant percentage" of the total reqs addressed by CSs in an upgrade cycle
- SoS oversight activities and the rate of capability modifications/changes being implemented are sufficient to keep an SoSE team engaged (i.e., little-to-no slack time)

SoSE team is NOT cost effective when

- The number of systems in an SoS is "small"
- The CS volatility is high and the SoS changes are small

The SoSE "oversight factor" is a key factor in determining the cost effectiveness of the SoSE team

- More work is needed to determine a more accurate "oversight factor"
- This factor may be variable across multiple SoSs

There may be reasons other than cost to engage an SoSE team

- Importance of SoS
- Critical SoS performance requirements requiring extensive analysis at the SoS level

References

- ANSI/EIA (1999). ANSI/EIA-632-1988 Processes for Engineering a System.
- Boehm, B., Abts, C., Brown, A. W., Chulani, S., Clark, B., Horowitz, E., Madachy, R., Reifer, D. J. and Steece, B. (2000). Software Cost Estimation With COCOMO II, Prentice Hall.
- Boehm, B. and Lane J. (2006) "21st Century Processes for Acquiring 21st Century Software-Intensive Systems of Systems." CrossTalk - The Journal of Defense Software Engineering, Vol. 19, No. 5, pp.4-9.
- Boehm, B., Valerdi, R., Lane, J., Brown, A., (2005) "COCOMO Suite Methodology and Evolution," *CrossTalk The Journal of Defense Software Engineering*, Vol. 18, No. 4, pp. 20-25, April 2005.
- Dahmann, J. and Baldwin. K. (2008); "Understanding the Current State of US Defense Systems of Systems and the Implications for Systems Engineering", Montreal, Canada: *Proceedings of the IEEE Systems Conference*, 7-10 April.
- Department of Defense (DoD) (2006); Defense Acquisition Guidebook, Version 1.6, accessed at http://akss.dau.mil/dag/ on 2/2/2007.
- Department of Defense (DoD) (2008); Systems Engineering Guide for System of Systems, version 1.0.
- Finley, J. (2006); "Keynote Address", Proceedings of the 2nd Annual System of Systems Engineering Conference
- Ford D. and Sterman J. (2003); "Iteration Management for Reduced Cycle Time in Concurrent Development Projects", Concurrent Engineering Research and Application (CERA) Journal.
- Greer, D., Black, L., Adams, R. (2005), "Improving Inter-Organizational Baseline Alignment in Large Space System Development Programs", *Proceedings of IEEE Aerospace Conference*.
- INCOSE (2006); Systems Engineering Handbook, Version 3, INCOSE-TP-2003-002-03.
- ISO/IEC (2002). ISO/IEC 15288:2002(E) Systems Engineering System Life Cycle Processes.
- Krygiel, A. (1999); Behind the Wizard's Curtain; CCRP Publication Series, July, 1999, p. 33

References (continued)

- Lane, J. and Valerdi, R., (2007); "Synthesizing System-of-Systems Concepts for Use in Cost Estimation", *Systems Engineering*, Vol. 10, No. 4.
- Lu, S. (2003); Engineering as Collaborative Negotiation: A New Paradigm for Collaborative Engineering, http://wisdom.usc.edu/ecn/about ECN what is ECN.htm accessed on 2/14/2007.
- Madachy, R., B. Boehm, and J. Lane (2007); "Assessing Hybrid Incremental Processes for SISOS Development", *Software Process: Improvement and Practice*, Vol. 12, Issue 5, pp. 461-473.
- Maier, M. (1998); "Architecting Principles for Systems-of-Systems"; Systems Engineering, Vol. 1, No. 4 (pp 267-284)
- Rechtin, E. (1991); Systems Architecting: Creating & Building Complex Systems, Prentice Hall.
- United States Air Force (USAF) Scientific Advisory Board (SAB) (2005); Report on System-of-Systems Engineering for Air Force Capability Development; Public Release SAB-TR-05-04
- Valerdi, R. (2005); Constructive Systems Engineering Cost Model. PhD. Dissertation, University of Southern California.
- Valerdi, R. and Wheaton, M. (2005); "ANSI/EIA 632 as a Standardized WBS for COSYSMO", AIAA-2005-7373, Proceedings of the AIAA 5th Aviation, Technology, Integration, and Operations Conference, Arlington, Virginia.
- Wang, G., Valerdi, R., Ankrum, A., Millar, C., and Roedler, G. (2008), "COSYSMO Reuse Extension", *Proceedings of the* 18th Annual International Symposium of INCOSE, The Netherlands.